

Fate and behaviour of nanomaterials in incineration processes

Pawel Jan Baran M. Eng. Unit of Technology of Fuels (TEER) RWTH Aachen University

8th CEWEP Waste-to-Energy Congress 2016 16-17 June in Rotterdam

Federal Ministry of Education and Research

Outline

- Introduction
- Project NanoEmission
- Basic research
- Measurement campaign in WtE plant Weisweiler
 - Methods
 - Results
- Conclusions

Introduction

Definition

TiO₂

CNT

Nanomaterial: "A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm - 100 nm."[1]

 CeO_2

Source: Recommendation on the definition of a nanomaterial (2011/696/EU), 18.10.2011 (updated on 08.06.2016) http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm#top-page

Project NanoEmission

Approach

Extension of the knowledge in the field of emission behavior of nanoparticles in waste incineration process:

Basic research

Project-specific nanomaterial

Fig. 2: SEM picture of BaSO4 agglomerates and particle size distribution by number in aqueous suspension (0,7% Ecodis P-30) (DLS)

Sintering behaviour of BaSO4

Fig.3 Change of the test samples' surface area during heating in the presence of air (heating microscope)

Measurement campaign in WtE plant Weisweiler (Germany) (16-20.11.2015)

Experiments in waste incineration plant Weisweiler

Pawel Baran

11/25

Methods

Z1: Addition of nanomaterial

Fig.4: Production and dosing of nanosuspension

E1-3: Sampling points for combustion residues

E1: Bottom ash

14/25

E2: Boiler ash

E3: Residue from fabric filter

Fig.5: Sampling und preparation of combustion and filtration residues conducted according to DIN 22022 and DIN 51701

Determination of Ba concentration \rightarrow ICP-MS Analysis

R1-3: Dust measurement techniques

Fig.6: Devices for the dust measurement (left), principle of particle impaction (right, above) and precipitator with collected dust (right, below).

E1-3: Mass concentration of Ba in combustion residues

Pawel Baran "Fate and behaviour of nanomaterials in incineration processes" 8th CEWEP Waste-to-Energy Congress 2016 16-17 June in Rotterdam

R1: Gravimetric determination of particle mass concentration flue gas after boiler

Pawel Baran

R4: Gravimetric determination of particle mass concentration clean gas after fabric filter

Pawel Baran

19/25

R1: Determination of particle size distribution (cascade impactor) flue gas after boiler

Pawel Baran

20/25

Mass balance

*Barium background concentration has been substructed

Pawel Baran

21/25

Comparison

Research group /	ENM	Mass distribution			Separation efficiency
Incineration plant					
ETH Zürich / Municipal waste incineration plant *	nano-CeO2	Slag: 81% Ce	Fly ash: 19% Ce	Quench water: 0,02% Ce	Electrostatic precip. C1: 99,9 % (Ce)
KIT Karlsruhe / Hazardous waste incineration plant **	nano-CeO2	Boiler: 10,6 %Ce	Quench water: 68,7 % Ce	Fly ash: 0,1% Ce	Electrostatic precip. 99,99 % (Ce)
Fraunhofer Umsicht / sewage-sludge-incineration plant	nano-TiO2	Bottom ash & boiler: 89,9% Ti	Adsorber & fabrik filter residue: 10,7% Ti		Fabrik filter: 99,99% (Ti)
NanoEmission / Municipal waste incineration plant	nano-BaSO4	Bottom ash: 59,1% Ba	Boiler: 5,8% Ba	Fabrik filter res 3,2 % Ba	Fabrik filter: 99,98% (Ba)

Source:

22/25

Walser, T.; Limbach, L. K.; Brogioli, R.; Erismann, E.; Flamigni, L.; Hattendorf, B.; Juchli, (2012) Persistence of engineered nanoparticles in a municipal solid-waste incineration plant.

Liesen, I.-M., Baumann W., Hauser M., Mätzing H., Paur H.-R., Seifert H., Untersuchung zur Freisetzung von synthetischen Nanopartikeln bei der Börner et al. Abfallverbrennung, Energie aus Abfall Band 12, 2015 Tagungsband

Untersuchung möglicher Umweltauswirkungen bei der Entsorgung nanomaterialhaltiger Abfälle in Abfallbehandlungsanlagen

Conclusions

Conclusions

- Emission behaviour dependent on thermochemical properties of ENMs
- High total dust content \rightarrow agglomeration tendency
- Fluctuating background concentration of trace elements in waste and long residence time of NP → difficulties in accurate estimation of the nanoparticle's path distribution
- Most significant distribution pathway of ENMs is the bottom ash (50 90%)
- High separation efficiency in existing flue gas cleaning systems
- Fate and behavior of ENMs in combustion residues is still to clarify

Thank you for your interest!

Pawel Jan Baran M. Eng.

Wüllnerstraße 2 Raum Be 126 RWTH Aachen University 52056 Aachen

www.teer.rwth-aachen.de

