

WtE and CO₂ Accounting

Alessio Boldrin Associate Professor

Department of Environmental Engineering Technical University of Denmark

aleb@env.dtu.dk

DTU Environment

Department of Environmental Engineering

Discussion about carbon accounting and carbon neutrality

Situation

- WtE manages waste
- WtE generates energy
- WtE emits CO₂ both fossil and biogenic

<u>Challenge</u>

- Fossil CO₂ emissions conflicts with regional carbon emission targets
- Several CO₂ reporting systems exist
- Even biogenic CO₂ emissions may be problematic over time

"Towards a carbon neutral capital" An example of CO₂ targets for Copenhagen

CO₂ emissions in City of Copenhagen 2005-2025

Targets for Energy Production 2025

- District heating in Copenhagen is carbon neutral
- Electricity production is based on wind and biomass and exceeds total electricity consumption in Copenhagen
- Plastic waste from households and businesses is separated
- Biogasification of organic waste

WtE in the energy system

Department of Environmental Engineering

www.dmi.dk

District heating networks (examples)

Department of Environmental Engineering

Fruergaard et al. (2010)

How-to be sustainable?

GHG accounting: Waste-to-Energy

Upstream-Direct-Downstream (UDD)

Upstream	Direct	Downstream
Emissions related to production and provision e.g. of: Fuels Electricity Heat Materials Resources	 Emissions originating directly from the system/technology in question, e.g.: Combustion of fuels Combustion of waste Internal transport 	 Emissions and savings e.g. related to: Substitution of energy Substitution of materials Management of residues

CO₂-accounting EXAMPLE: WtE

Upstream

Direct

Downstream

57 kg CO₂-eq/tonne waste

374 kg CO₂-eq/tonne waste

-910 kg CO₂-eq/tonne waste

(kg CO₂-eq/tonne waste)

Provision of:

Electricity: 50Natural gas: 0.6Oil: 0.6Flue gas cleaning: 6

(kg CO₂-eq/tonne waste)

Emission of:

Fossil CO₂ (natural gas): 4.4
Fossil CO₂ (oil): 2.9
Fossil CO₂ (waste): 367
Biogenic CO₂ (waste): 0

(kg CO₂-eq/tonne waste)

Substitution of:

• Electricity: -347 • Heat: -563

• Residues: 0.5

Included (pr. tonne waste)

Electricity: 100 kWh
Natural gas: 2 Nm³
Oil: 1 l
CaCO₃: 5 kg
NaOH: 1 kg
NH₃: 1 kg

Included (pr. tonne waste)

Natural gas: 2 Nm³
Oil: 1 I
Fossil C in waste: 100 kg
Biogent C in waste: 200 kg

Included (pr. tonne waste)

• Elelctricity (25 %): 694 kWh • Heat (75 %): 7500 MJ

• Residues: 50 kg

Climate impacts from electricity generation

Waste-to-Energy

Turconi et al. (2013)

Example: climate impacts and surrounding energy system

Recommendations

- Use an UDD approach to explain the potential benefits of WtE
- The more efficient a plant is, the greater are the benefits
- Be aware of situations where WtE is not the environmentally preferable solution

References

- Astrup, T.; Møller, J.; Fruergaard, T. (2009): Incineration and cocombustion of waste: accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27, 789-799.
- City of Copenhagen (2016) CPH 2025 Climate Plan Roadmap 2017–2020. Technical and Environmental Administration, City of Copenhagen, Denmark.
- Fruergaard et al. (2010) Energy recovery from waste incineration: Assessing the importance of district heating networks. Waste Management, 30, 1264–1272
- Turconi, R., Boldrin, A., & Astrup, T. F. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555-565.