9th CEWEP Waste-to-Energy Congress 20-21 September 2018, Bilbao

If earthworms cannot help: tiered approach in line with chemical legislation

Carsten Spohn, ITAD e.V.

Interessengemeinschaft der Thermischen Abfallbehandlungsanlagen in Deutschland e.V.

nteressengemeinschaft der hermischen Abfallbehandlungsanlagen n Deutschland e.V.

CLASSIFICATION OF BOTTOM ASH

H(P)14 -INTRINSIC PROPERTIES OR RISK ASSESSMENT

The root of all "evil"

H14 Ecotoxic

The root of all discussions...

H14 Ecotoxic

Bottom ash from MSWI – a "special" waste

- Fresh, processed and aged bottom ash
- Coarse and fine metals
- Aging process
 influencing pH-value,
 - leaching behaviour etc.

limited application areas for recovery (e.g. road construction, walls etc.)

Biotest scheme based on soil testing -

Three aquatic and three terrestrial test methods:

luminescent bacteria test

earthworm test

algae growht inhibition test

bacteria contact test

daphnia test

plant growth test

The first attempt: biological ecotox-testing (2006-2008)

Interessenged Thermischen J in Deutschlan

Interessengemeinschaft der Thermischen Abfallbehandlungsanlager n Deutschland e.V.

Results biotest:

- test scheme questionable
- strongly fluctuating results
- no reliable reproducibility
- time consuming
- high cost

Official result biotest:

A comprehensive assessment of bottom ash with regard to the H-14 criterion according to the European Waste Catalogue is only possible by a combination of chemical and biological studies.

The interim solution...

Interessengemeinschaft der ^Chermischen Abfallbehandlungsanlagen n Deutschland e.V.

A few years later... THE EUROPEAN WAY:

ALIGNMENT OF WASTE AND CHEMICAL LEGISLATION

with a "little" bit of risk assessment regarding HP14

Classification of waste according to the list of wastes (as hazardous or non-hazardous waste) should be based on a guidance document (not legally binding for Member States) taking into account classification approaches of chemical legislation (CLP).

<u>But:</u>

Under CLP, substances and mixtures with known composition are carefully classified on the basis of their intrinsic hazard potential, but the input and output of waste incineration plants is extremely heterogeneous. CLP classification methods - only based on chemical analyses, without taking waste-specific characteristics into account can lead to significant inaccuracies in the classification results especially with regard to HP14 "ecotoxic".

10

The European way Basis: waste legislation, CEWEP bottom ash dossier and ECN

Waste classification is based on Commission Decision 2000/532/EC on the List of Waste (LoW) amended by Commission Decision 2014/995/EU and Annex III of the Waste Framework Directive 2008/98/EC (WFD), amended by Commission Regulation (EU) No 1357/2014 (1 June 2015) due the implementation of the Regulation (EC) No 1272/2008 (CLP regulation): all hazardous properties (HP1 – HP 15) have to be checked.

tiered approach based on CEWEP bottom ash dossier values (95th percentile of European bottom ash composition)

Element	Average	Median	Min	Max	95 percentile	95 percentile	N
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	
Ca	130833	125586	50825	198289	190442	19.0	322
CO3	61073	59100	26160	103800	103404	10.3	38
Fe	58714	56703	34216	118220	103299	10.3	259
Si	82713	84180	61060	96078	93898	94	129
AI	47232	44627	30527	75089	71620	72	311
CI	9211	5943	3644	37633	37188	37	136
Na	21379	22270	12308	34791	32121	32	234
TOC	10092	9340	1350	42760	24664	2.5	1382
Ma	12429	11242	6377	34372	21025	2.0	287
K	7748	7595	4854	12722	11857	12	260
P	5633	5049	2531	12556	11773	12	220
Cu	3275	2510	738	17620	8863	0.89	1699
S	3862	3475	1310	16808	7873	0.79	455
Ti I	4244	4112	2873	7479	6636	0.66	262
Zn	3241	2871	1142	9370	6250	0.63	1697
<u>c</u>	3171	2011	1110	5702	5383	0.54	69
Dh	1309	1058	107	6441	3969	0.04	1706
Ba	1102	958	760	2970	2207	0.22	288
Mo	1173	1104	644	22/18	1965.3	0.22	313
PO4	248	10	10	1360	1311	0.13	38
F	148	71	13	1779	1219.5	0.13	78
Cr	353	315	115	852	754	0.075	1701
NO3	172	100	5	975	732	0.073	39
Ni	195	152	29	950	531	0.073	1696
So.	103	153	50	727	510	0.053	225
011	109	104	20	522	401	0.032	101
0 6r	274	270	267	360	250	0.040	126
Sh	73	63	18	250	159	0.030	612
NHA	53.3	46.5	5	131	109	0.013	43
191.199	00.0	40.0	5	101	120	0.013	40
NO2-	13	1	<1	100	100	0.010	38
Co	31.8	23	11	103	91.1	0.0091	376
Br	44.7	42	23	95	80.6	0.0081	50
Mo	30.1	28	5	84	80.6	0.0081	533
v	41.2	36	19	248	/6.3	0.0076	349
As	17.3	14.7	4.4	/3.2	46.5	0.0047	1615
Ag	15.2	14.3	2.3	47.1	37.5	0.0038	127
11	6.7	3.8	3.4	27.5	28.6	0.0029	137
<u>u</u>	14	14	2	29	23	0.0023	92
le	10	9.8	5.3	24.8	22	0.0022	49
Cd	4.8	4.3	1.1	117	13.9	0.0014	1661
Se	5.2	4.7	2.3	12.2	12.7	0.0013	145
ВІ	2.1	0.05	0.05	11.3	1.4	0.00074	34
Hg	2.3	1.53	1.39	9.69	7.3	0.00073	316
Be	1.2	0.83	0.46	6.6	2.3	0.00023	162
CN	0.7	0.64	0.5	0.94	0.9	0.00009	50
Cr VI	0.5	0.5	0.3	0.8	0.8	0.00008	82
	1.2.6	26	14	42	4.1		31
Sol frac %	2.0	2.0	1.1				

only relevant calculation method for HP14:

$100 \times \Sigma c_H410 + 10 \times \Sigma c_H411 + \Sigma c_H412 \ge 25\%$

HP14 assessment based on total contact of elements

->

bottom ash most probably hazardous

HP14 Assessment based on eluates (risk based approach)

->

Bottom ash most probably non-hazardous

Interessengemeinschaft der Thermischen Abfallbehandlungsanlagen in Deutschland e.V.

THE "GERMAN" CLASSIFICATION APPROACH

...

. . .

Commission Decision 2000/532/EC on the List of Waste (LoW) amended by Commission Decision 2014/995/EU:

- 2. Classification of waste as hazardous
- The concentration limits defined in Annex III to Directive 2008/98/EC <u>do not apply to pure</u> <u>metal alloys in their massive form</u> (not contaminated with hazardous substances). Those waste alloys that are considered as hazardous waste are specifically enumerated in this list and marked with an asterisk (*).

THE BIRTH OF THE "BIG"-METHOD...

Standard-classification of bottom ash

- Database: CEWEP-bottom ash dossier, historic and new bottom ash data Germany (IGAM/ITAD)
- Basis for HP1 HP13 and HP15: **ECN** , tiered approach" used for CEWEP assessment
- Basis for HP14
 - Total content analysis of bottom ash using real data for the distribution of pure and bound metals (lead, copper, nickel, zinc) as well as their relevant binding forms – **bIG** investigations by **b**ifa Umweltinstitut GmbH, **I**TM (University of Duisburg-Essen) and **G**KS (WtE-plant in Schweinfurt)
 - Safeguarding the HP14 classification through risk-based based assessment analogous to the HP14 assessment from the ECN report (eluate check)

Idea of bIG: metal extraction from bottom ash

Interessengemeinschaft der Thermischen Abfallbehandlungsanlager in Deutschland e.V.

Assessment of four groups of "metals":

• Group 0: solid metals or alloying metals

Challenge: metal content in bottom ash

Cu-values in mg/kg (standard analysis)

Cu-values in mg/kg (after massive metal separation)

Idea of bIG: metal extraction from bottom ash

Interessengemeinschaft der Thermischen Abfallbehandlungsanlage in Deutschland e.V.

Four groups of "metals":

- Group 0: solid metals or alloying metals
- Group 1: "non-H410 substances" ions ("solid solution") firmly embedded in the basic structure of the mineral, bound in a very stable manner spinels (e.g. magnetite)

silicates with layer, band or chain structure (pyroxene group, melilite group)

- Group 2: "releasable substances" Oxides, hydroxides or carbonates that are sparingly soluble in water, acid soluble, soluble in strong complexing agents (EDTA)
- Group 3: "water-soluble salts"

Subordinate salts (partly react to hydroxides) Oxo complexes (anions with Cu, Zn, Pb)

The biG-HP14 result (example)

It can be concluded, that bottom ash is generally to be classified as **non-hazardous!**

Thanks for your patience

Interessengemeinschaft der Thermischen Abfallbehandlungsanlagen in Deutschland e.V.