

10th CEWEP Congress

Technical Seminar

Overview of CO₂ capture technologies for WtE: current perspective and future possibilities

<u>Federico Viganò</u>^{1,2}, Letizia Cretarola^{1,2}, Gabriele Mazzolari², Edoardo De Lena², Maurizio Spinelli², Stefano Consonni^{1,2} ¹ Dep. Of Energy – Politecnico di Milano ² LEAP Scarl

Waste, Energy and Climate

14th-16th June 2023, Berlin

Carbon capture and associated technologies

DUNDED IN 2005

Congress

2

....

III CC technologies potentially appliable to EfW

LEAP & IREN Innovazione - evaluation of **different CC solutions for EfW** (case study: 200kt/y)

Preliminary technical, economical and environmental characterization based on literature data/ LEAP previous works

16/06/2023

III Amines adsorption

F. Viganò – CO₂ capture in WtE – 10th CEWEP Congress

16/06/2023

- Simple concept: waste combustion is switched to oxyfuel mode, to produce flue gas rich in CO₂ and H₂O (water is then separated by condensation)
- Requires huge modifications to EfW plant and an Air Separation Unit (ASU) for O₂ production (high energy penalty)

- Membranes separate selectively specific components from mixtures (e.g., CO₂/N₂)
- Pre/Oxy/Postcombustion membranes (Polymeric): CO₂ is adsorbed over membrane surface and then diffuses through the polymeric film, exploiting its higher affinity and shorter free path (compared to N₂)
- Significant energy consumption especially for low CO₂ concentrations in the feed (the driving force of the process in the partial pressure ratio across the membrane)

[Power plant post-combustion carbon dioxide capture: An opportunity for membranes | 2010]

Molten Carbonate Fuel Cells -> *electrochemical* membranes operating at high temperature Peculiar feature: they require to be **fed with CO**, to produce electricity

16/06/2023

....

- MCFCs are fed by **natural gas** (NG) or other gaseous fuels converted into H_2 and electricity with **high efficiency** (up to~50%) They require a simple **CO₂ purification unit** (**CPU**) for (i) separating unconverted syngas and (ii) reaching CO₂ purity specifications With further NG consumption, they can also produce **blue hydrogen** (-> CO₂ from NG is 100% captured) Waste carbon content can potentially be captured to 90%, while **enhancing electrical and thermal output** of the host plant
- Active NO_x separation, driven by secondary electrochemical reactions
- They have been lab tested for CO_2 capture from flue gas of coal- and NG-fired plants, but never on flue gas from WtE plants Comparison to the comparison of the pollutants (e.g. SO_2 , metals)

They feature very high CAPEX and OPEX* and there is only one industrial-scale manufacturer (Fuel Cell Energy)

* High OPEX are related to the limited durability of the active layers of MCFC stacks, that must be substituted every 5-7 years

The combination between MCFC & CPU maximizes (i) the fuel utilization (the unconverted syngas relased by MCFC anode is separated in the CPU and recycled back) and (ii) the carbon capture rate, which overcomes 90%.

F. Viganò – CO₂ capture in WtE – 10th CEWEP Congress

TECNOPOLO PIACENZA

DUNDED IN 2005 F POLITECNICO DI MILANO

10

16/06/2023

F. Viganò – CO₂ capture in WtE – 10th CEWEP Congress

16/06/2023

- Based on the capability of calcium oxide (CaO) to react with CO₂, generating calcium carbonate (CaCO₃)
- The **sorbent is regenerated** by the reverse reaction (**calcination**, CaCO₃+heat -> CaO + CO₂) sustained by oxyfuel combustion
- A continuous sorbent make-up (and a corresponding purge) is required to keep high reactivity and low ash build-up
- The high quality CaO-rich purge can be valorized as raw material for the production of clinker, cement or binders

CaL

CaL

F. Viganò – CO₂ capture in WtE – 10^{th} CEWEP Congress

13

16/06/2023

III CC technologies potentially appliable to EfW

Ref. EfW : 200 ktUrw/y	EfW ref	Solvents (MEA)	Membranes + CPU	MCFC+CPU	Oxycombustion +CPU	Ca-Looping+CPU
NON END BOLES I A Primary Arr	200kt/y URW	ACCORDER For the sector of the				Carbonator Calciner
ε _{CO2, captured}	-					
Power output [MW _e]	20					
Fuel Input [MW _{LHV}]	82					
Net electric efficiency [%]	24.4					
Electric energy for CO ₂ capture [GJ ₂ /t _{CO2}]	-					
Thermal energy for CO_2 capture [GJ _t /t _{CO2}]	-					
Cost of CO ₂ avoided [€/tCO2]	-					
TRL	-					
Technological maturity	-					
Retrofitability	-					
Impact on host plant operation	-					

CC technologies potentially appliable to EfW

Ref. EfW : 200 ktUrw/y	EfW ref	Solvents (MEA)	Membranes + CPU	MCFC+CPU	Oxycombustion +CPU	Ca-Looping+CPU
MSV FFW AN BOLER FW FFW AN BOLER CRAINER BALER AND CRAINER FW AND CRAINER STEAM CYCLE Pring CRAINER SECTION CONCERNENT	200kt/y URW					Carbonator Calcher
ε _{CO2, captured}	-	90%	50-90%	92%	90%	94%
Power output [MW _e]	20	10	3-9	33	8	24
Fuel Input [MW _{LHV}]	82	82	82	82 + 32.6 (NG)	82	82+80 (line replacement)
Net electric efficiency [%]	24.4	12.2	3.6-11.0	28.8	9.9	14.8
Electric energy for CO ₂ capture [GJ _e /t _{CO2}]	-	-0.36	-1.26 ÷ -1.94	-0.66 *CPU+MCFC auxiliaries	-1.35 *CPU+ASU	-0.82 *CPU+ASU+auxiliaries
Thermal energy for CO ₂ capture [GJ _t /t _{CO2}]	-	-3	-	-	-	-
Cost of CO ₂ avoided [€/tCO2]	-	200-230	200-730	-	-	119-168
TRL	-	9	<5 (not tested for EfW applications)	<5 (not tested for EfW applications)	<4	6
Technological maturity	-	Available for full scale application	Tested with gas from coal/NG combustion – still to test with EfW effluents and pollutants	Lab tests with variable CO ₂ concentrations and variable pollutants concentrations	Very low (demonstrated only in CFB applications)	Tested to capture CO_2 from coal-fired boiler and with SRF combustion in the calciner
Retrofitability	-	«End-of-pipe» (possible modifications to ST)	Possible «End-of-pipe» Even if for high capture rate, slective flue gas recirculation is required, with heavy boiler modifications	«End-of-pipe» (NG required)	Greenfield application. The retrofit option would require significant modification to boiler, heat transfer surfaces, ST and gas treatment line	One line replacement or addition («End-of-pipe»), with modification to gas treatment line and steam cycle
Impact on host plant operation	-	Impact on district heating	Impact on power production	Increase in electricity and heat output	ASU consumption (only partially compensated by higher gross power output	High integration with steam cycle, higher efficiencies

III CC technologies potentially appliable to EfW

Ref. EfW : 200 ktUrw/y	Solvents (MEA)	Membranes + CPU	MCFC+CPU	Oxycombustion +CPU	Ca-Looping+CPU
MSW EW FY Ah	ASCORED Par and Copy of Astronomic Copy of Astronom				Carbonator Calciner
PRO	 mature technology, market-ready (max TRL) limited footprint 0.2-0.8 m²/Nmc/s (e.g., 1000 m² - without including the compression unit - for a 20 MW_{el} EfW) 	 conceptually simple and modular technology no chemicals limited footprint – 1500 - 2000 m² for the reference EfW 	 available on the market high electric efficiency suitable for the coproduction of power, hydrogen and heat modular and flexible, suitable for many sectors(e.g., NGCC, EfW) 	 conceptually simple high CO₂ concentration reachable only without air infiltrations 	 CFB reactors familiar to EfW sector Moderate energy penalty Possible increase of thermal power output sinergy processes – CaO recovery CFB reactors re-usable for gasification
CONS	 -significant energy penalty associated to solvent regeneration → impact on cogenerative plants -solvent degradation (make- up) -side species emissions, to be evaluated with long tests 	 -high electric consumptions for gas compression, especially for high CC efficiency -uncertainties related to materials degradation -low technology maturity for EfW 	-use of NG-deep gas polishing is required -low durability, high costs -large footprint (800 m ² for a 2 MW module in CC configuration, including BOP) → 8000 m ² for the reference EfW plant	 -significant uncertainties related to air-in leakages -high energy penalty due to high ASU consumption (small size) -no retrofit – EfW plant must be re-built 	 -calciner fed with SRF -high solid amounts to be handled -high footprint -cyclone selectivity (high efficiency for CaO, low efficiency for ash) for avoiding sorbent losses and ash build-up

- Even if Amines absorption is the closest to market post-combustion CO₂ capture technology also for EfW plants, several other possibilities are currently under development
- > Some of these offer interesting energy performances, with possible beneficial effects on OpEx
- In particular, MCFCs and CaL seems very promising options
- MCFCs feature rather high efficiency in converting NG to electricity, thus offsetting part of the energy cost of CO₂ capture
- > Their main problem, currently, is their very high CapEx
- CaL requires relevant interventions on the EfW section of the plant: a partial substitution or a significant capacity expansion
- > An additional drawback is the very significant amount of solid sorbent handled in the plant
- > Energy performances of both MCFCs and CaL are better than those achieved by (reference) Amines
- > MCFCs and CaL do not penalise the cogeneration capacity of the plant (differently from Amines)
- > However, this can be a real advantage only when the EfW plant is coupled with a very large DH network

Preliminary comparison of three technologies based on energy performances

Focus on a plant treating 160 kt/y of MSW Reference case: grate-based EfW plant without capture Benchmark case: MEA CO₂ capture MCFC case with two sets of MCFCs (see Viganò et al., 2022) MCFC case with only one set of MCFCs and reduced performances CaL case

Thanks for your attention!

Contact: <u>federico.vigano@polimi.it</u>

Backup slides

F. Viganò – CO₂ capture in WtE – 10th CEWEP Congress

Data from Consonni & Viganò, 2011 – Waste sent to energy recovery from a collection area featuring 65% source separation

Waste fraction	% by mass	Ultimate composition	% by mass	LHV = 10.45 GJ/t
Paper and cardboard	20.62	С	27.85	<u>CO₂ emission factors:</u>
Wood	3.02	Cl	0.27	- \overline{O} verall CO ₂ 97.69 kg/GJ _{LHV}
Plastics	22.56	F	0.004	- Biogenic CO ₂ 49.63 kg/GJ ₁₁₀
Glass and inerts	2.76	н	4.26	0.519 t/t
Ferrous metals	3.09	Ν	0.62	- Fossil CO ₂ 48.06 kg/GJ _{LHV}
Non-ferrous metals	0.32	0	15.74	
Food waste	24.38	S	0.03	Biogenic carbon share: 50.8%
Green waste	10.08	Ash	14.50	Reference plant:
Organic fines	8.31	Moisture	36.72	2 identical grate-based lines
Inert fines	4.86			160.000 t/y waste treated
		Biogenic C	14.15	(@ 10.45 GJ/t \rightarrow 74.34% load factor)
		Fossil C	13.70	Cogeneration capacity = 40 MW_{TH}

16/06/2023

.....

F. Viganò – CO_2 capture in WtE – 10th CEWEP Congress

16/06/2023

III Scenarios – mass balances

When treating 160,000 t/y of waste

Plant:	Reference, no CC	MEA	2 MCFC sets	1 MCFC set	CaL
Annual CO ₂ emission from EfW plant, kt	163.25	15.84	16.50	23.71	6.39
Annual CO ₂ emission from SRF production, kt	-	-	-	-	11.14
Overall annual CO ₂ emissions, kt	163.25	15.84	16.50	23.71	17.53
Overall annual fossil CO ₂ emissions, kt	80.37	-64.53	-63.88	-56.66	-62.85
Overall CO ₂ capture efficiency, %	-	90.30	92.04	88.73	89.26
Capture efficiency of CO ₂ from NG, %	-	-	100.00	90.00	-
Capture efficiency of CO_2 from waste, %	-	90.30	89.90	88.37	89.26
Efficiency of CO ₂ capture section, %	-	90.30	92.04	88.73	95.80

In the case of CaL, (direct) CO₂ emissions from SRF production must also be considered.

In the Table, indirect CO₂ emissions (e.g., due to electricity consumption for SRF production, different electricity outputs from EfW plants) are not considered.

III SPECCA: Specific Primary Energy for Carbon Avoided (MJ/kg_{co2})

$$SPECCA[\frac{MJ}{kg_{cO2}}] = \frac{\Delta EP_{CCS} [MJ]}{\widetilde{CO}_{2,avoided} [kg_{CO2}]}$$

For a fossil fuel-fired power plant, producing only electricity, the calculation is straightforward, by simply focusing on a unit product (kWh_{el}):

$$SPECCA[\frac{MJ}{kg_{CO2}}] = \frac{(HR_{w/_CCS} - HR_{w/o_CCS}) [MJ_{LHV}/kWh_{EL}]}{(e_{w/o_CCS} - e_{w/_CCS})[g_{CO2}/kWh_{EL}]/1000} = 3600 \cdot \frac{\frac{1}{\eta_{w/_CCS}} - \frac{1}{\eta_{w/o_CCS}}}{(e_{w/o_CCS} - e_{w/_CCS})[g_{CO2}/kWh_{EL}]/1000} = 3600 \cdot \frac{1}{(e_{w/o_CCS} - e_{w/_CCS})}$$

→ To compensate for the change of efficiency due to carbon capture, a higher/lower fuel consumption is considered.

When the fuel is waste, its availability is constrained, thus it is better to carry out the analysis with reference to a fixed amount of waste to be treated.

 \rightarrow To compensate for the change of efficiency due to carbon capture, other energy sources must be considered.

Combined Heat and Power (CHP) production makes the situation even more complex.

Framework for CHP EfW plants:

A possibility to avoid overestimating the energy performances of EfW+CCS is to consider the best alternative programmable source of electricity and heat: a CHP Natural Gas-fired Combined Cycle (NGCC), in the two versions with and without post-combustion CO_2 capture by MEA (Ref. FP7 CAESAR Project, SPECCA = 3.29 MJ/kg_{CO2}).

Parameter	Without Carbon Capture	With Carbon Capture	
Net electric efficiency, % _{LHV}	58.3	49.9	
Specific CO ₂ emission, kg/MWh _{el}	351.8	36.2	
Marginal ratio cogenerated heat / electricity lost	7.7		
Corresponding thermal efficiency, % _{LHV}	448.9	384.2	
Corresponding specific CO ₂ emission, kg/MWh _{th}	45.7	4.70	

When reference is made to the non-decarbonised CHP NGCC (i.e., w/o CC), SPECCA^(a) is evaluated. When reference is made to decarbonised CHP NGCC (i.e., with CC), SPECCA^(b) is evaluated.

The considered NG features a carbon intensity of 56.97 kg_{CO2}/GJ_{LHV} .

III Scenarios: base performances data

Situation with minimum cogeneration (i.e., thermal power output is set to the minimum allowed by each plant configuration)

Plant:	Reference, no CC	MEA	2 MCFC sets	1 MCFC set	CaL
Energy potential of treated waste, MW _{LHV}	71.32	71.32	71.32	71.32	66.60
NG input to MCFCs, MW _{LHV}	-	-	32.88	35.37	-
Grate combustor(s) input, MW _{LHV}	71.32	71.32	71.32	71.32	35.66
SRF calciner input, MW _{LHV}	-	-	-	-	29.31
Energy lost for SRF production, MW _{LHV}	-	-	-	-	1.63
Steam cycle electric power output, MW _{EL}	16.49	12.29	16.36	16.40	16.13
MCFCs electric power output, MW _{EL}	-	-	20.17	20.24	-
Auxiliaries of EfW section, MW _{EL}	2.96	3.00	3.01	3.01	3.00
Auxiliaries of CC section, MW _{EL}	-	2.58	4.38	4.26	6.23
Consumption for SRF production, MW _{EL}	-	-	-	-	0.25
Net electric power outcome, MW _{EL}	13.53	6.71	29.14	29.37	6.65
Thermal power required by CC section, MW _{TH}	-	23.11	-	-	-
Thermal power recovery from CC section, MW _{TH}	-	0.55	0.85	0.81	0.00
Thermal power adjustment (from steam cycle), MW_{TH}	-	0.00	0.70	0.49	0.00
Minimum cogenerated thermal power (70-120°C), MW $_{TH}$	0.00	0.55	1.55	1.31	0.00

F. Viganò – CO_2 capture in WtE – 10th CEWEP Congress

III Scenarios: base performances data

Situation with minimum cogeneration (i.e., thermal power output is set to the minimum allowed by each plant configuration)

Plant:	Reference, no CC	MEA	2 MCFC sets	1 MCFC set	CaL
Overall net electric efficiency, % _{LHV}	18.97	9.40	27.97	27.54	9.99
Overall net thermal efficiency, % _{LHV}	0.00	0.77	1.49	1.22	0.00

Situation with maximum cogeneration (i.e., thermal power output is set to the maximum allowed by each plant configuration)

Plant:	Reference, no CC	MEA	2 MCFC sets	1 MCFC set	CaL
Maximum cogenerated thermal power (70-120°C), MW_{TH}	40.00	17.44	40.85	40.81	39.13
Corresponding net electric power output, MW _{EL}	6.26	3.64	22.00	22.19	-0.46
Overall net electric efficiency, % _{LHV}	8.77	5.10	21.12	20.80	-0.69
Overall net thermal efficiency, % _{LHV}	56.09	24.45	39.20	38.26	58.75

Situation with the same level of cogeneration (on annual basis)

Plant:	Reference, no CC	MEA	2 MCFC sets	1 MCFC set	CaL
Cogenerated thermal power (70-120°C), MW _{TH}	15.00	15.00	15.00	15.00	13.99
Corresponding net electric power output, MW _{EL}	10.80	4.08	26.70	26.89	4.11
Marginal NG conversion efficiency, % _{LHV}	-	-	48.36	45.48	-
SPECCA ^(a) , MJ/kg _{CO2}	-	2.052	0.719	1.035	1.827
SPECCA ^(b) , MJ/kg _{CO2}	-	2.170	0.158	0.514	1.951

III Energy performances when considering the coupling with a DH network

Based on the characteristics of both the plant and the DH network, it is possible to evaluate the maximum thermal energy that can be supplied.

Two coupling situations can be considered: small and large DH. The load duration curve can be modelled analytically.

"*a*" and "*a* + ΔP " represent the minimum and maximum power demand. "*k*" and "*n*" are "shape factors", *k* = 165 and *n* = 0.3 work well.

DOL ITECNICO DI MILANI

50.0

F. Viganò – CO₂ capture in WtE – 10th CEWEP Congress

 $\Delta P, MW$

29

400.0

III Energy performances when considering the coupling with a DH network

Annual theoretical thermal energy = Area of the DH load duration curve

Reduction coefficient for thermal energy = $1 - (1 - LF) \times 0.5$

LF = Load Factor

Plant:	Reference, no CC	MEA	2 MCFC sets	1 MCFC set	CaL
Load factor, %	74.30	74.30	74.30	74.30	79.68
Reduction coefficient for thermal energy, %	87.15	87.15	87.15	87.15	89.84
Waste energy input, GWh _{LHV}	464.20	464.20	464.20	464.20	464.20
NG energy input, GWh _{LHV}	0.00	0.00	214.01	230.21	0.00

Annual saleable thermal energy = Annual theoretical thermal energy x Reduction coefficient for thermal energy

Maximum annual theoretical electricity = Nominal power output x 8,760 x LF

Annual saleable electricity = Krid x [Maximum annual theoretical electricity – (Annual saleable thermal energy – Minimum cogenerated thermal power x 8,760 x LF) / Keq]

Krid = reduction coefficient for off-design operating conditions = 0.9Keq = thermal equivalent of electricity = 5.5

Krid applies also to the performance of the reference CHP NGCC

Coupling with the SMALL DH network:

Plant:	Reference, no CC	MEA	2 MCFC sets	1 MCFC set	CaL
Annual saleable thermal energy, GWh _{TH}	56.82	52.07	56.85	56.85	58.53
Annual saleable electricity, GWh _{EL}	69.95	31.35	163.09	164.18	32.24
Annual mean net thermal efficiency, % _{LHV}	12.24	11.22	8.38	8.19	12.61
Annual mean net electric efficiency, % _{LHV}	15.07	6.75	24.05	23.64	6.95
Annual SPECCA ^(a) , MJ/kg _{CO2}	-	2.03	0.73	1.05	1.80
Annual SPECCA ^(b) , MJ/kg _{CO2}	-	2.16	0.16	0.51	1.94

Coupling with the LARGE DH network:

Plant:	Reference, no CC	MEA	2 MCFC sets	1 MCFC set	CaL
Annual saleable thermal energy, GWh _{TH}	106.71	84.74	106.32	107.06	110.35
Annual saleable electricity, GWh _{EL}	61.79	26.00	155.00	155.96	23.76
Annual mean net thermal efficiency, % _{LHV}	22.99	18.25	15.68	15.42	23.77
Annual mean net electric efficiency, % _{LHV}	13.31	5.60	22.85	22.46	5.12
Annual SPECCA ^(a) , MJ/kg _{CO2}	-	2.00	0.73	1.05	1.81
Annual SPECCA ^(b) , MJ/kg _{CO2}	-	2.13	0.16	0.51	1.94

- A properly defined SPECCA index can be a suitable KPI to quantify energy performances of different options and, therefore, impacts on OpEx
- In terms of such a SPECCA index, EfW appears much more attracting than other technologies for the application of CO₂ capture (i.e., MEA in a NGCC leads to SPECCA = 3.29, in a EfW achieves SPECCA = 2.00)
- In terms of SPECCA index, no differences are appreciated between coupling with a small or large DH network
- > In economic terms, this would be different
- MCFC are very performing thanks to their ability of converting NG to electricity with a very high marginal efficiency, which is comparable with that of a decarbonised NGCC

- Consonni, S., and Viganò, F., 2011, "Material and energy recovery in integrated waste management systems: The potential for energy recovery", Waste Management 31, 2074-2084.
- Viganò F., Consonni S., Ragazzi M., Rada E. C., 2011, "A model for mass and energy balances of bio-drying", Paper 5457 in Proceedings of NAWTEC19: 19th Annual North American Waste-to-Energy Conference, Lancaster (PA), USA, May 16-18, 2011.
- Viganò, F., Cretarola, L., Spinelli, M., 2022, "Molten Carbonate Fuel Cells (MCFC) for the carbon capture in Energy-from-Waste (EfW) plants", Proceedings of Venice 2022: 9th International Symposium on Energy from Biomass and Waste, Venice, Italy, November 21-23, 2022.

