

#climatepositive by 2035

MVV Umwelt GmbH

We inspire with energy.

MVV Energie AG at a glance

Fully consolidated **companies**

Presence predominantly in

Germany and


```
at equity companies
```

Largest locations Mannheim Kiel Wörrstadt Offenbach Plymouth Dundee

MVV Energie AG Our locations

IVV Energie AG	Municipal utility companies
liomass	 Stadtwerke Kiel
Mannheim	2 EVO
Königs Wusterhausen	3 Köthen Energie
Ridham Dock	4 Stadtwerke Buchen
	5 Stadtwerke Sinsheim
nergy from waste	6 Stadtwerke Schwetzingen
Mannheim	Stadtwerke Walldorf
TREA Leuna	
Offenbach	Renewable energies
Plymouth	project development
Dundee	1 Juwi
Wind farms	Juwi locations
PV parks	a. o. Germany, Italy,

Greece, USA

Biomethane/

Services

bio-waste digestion

MVV Energie AG Our shareholder structure and business figures

Our future: #climatepositiv with the Mannheim Model

#climatepositiv until 2035 face the challenges with our Mannheim Model

By **2030** we will increase our electricity generation capacity from renewable energies to around 2,000 MW and convert our remaining fossilbased generation to green energy by 2035.

By **2035** we will provide products and services for the energy transition to all customer groups.

By **2035** we will be #climatepositiv

Global leader in climate protection and sustainability Climate targets internationally recognised and certified

MVV Umwelt GmbH

8 MVV Energie AG June 2025 MVV-CEWEP Award Energy efficiency and climate-oriented integration 2025

Key figures for MVV Umwelt and outlook for 2030

#climatepositive through integrating waste treatment, green heating and electricity transition

The decarbonisiation of district heating in Mannheim

11 MVV Energie AG June 2025 MVV-CEWEP Award Energy efficiency and climate-oriented integration 2025

District heating supply in the metropolitan region

Friesenheim Island with thermal waste treatment plant and biomass power plant (BMKW)

Coal-fired power plant with river heat pump and district heating storage

Key figures for the district heating network:

Customers (households):165,000 (region) Network length: 600 km District heating supplied: up to 2.3 TWh/a Peak load: up to 900 MWth Households supplied: 60% (in Mannheim)

Key figures for district heating generators:

2 Coal fired Blocks	920 I
1 River heat pump	20 I
3 EFW boiler + 1 BMKW district heating centre :	140 I
Peak-load and Back-Up plants (gas / oil):	520 I
District heating storage	250 I

MWth MWth MWth

520 MWth 250 MWth

Heating composition prediction FY 2025

District heating transition in Mannheim Step by Step green heat

Heat production composition (GWh in %)

(indicative and according to the latest predictions; Composition depends on electricity market, commissioning date of installations and geothermic discoveries)

Projects for the decarbonisation of the district heating at the Thermal Waste **Treatment Facility in** Mannheim

Energy from Waste plant Mannheim Friesenheimer Insel

δ

IVN: Industrial Steam supply North, MDK: Medium pressure steam boiler

Today - Development of District heating supply

HKW since 2020 – District heating supply phase one

Technical Parameter

Pumping capacity: District heating capacity: Turbine: 3 X 2.300 t/h 95 MWth 6 MWEI

HKW today – District heating supply phase two

BM(H)KW-

- Exhaust vapour pressure:

3,5 bar

 $45 \text{ MW}_{\text{th}}$

Waste wood

- Capacity:
- Fuel:

Heat exchanger WT3:

- Heating condenser
- Capacity: $45 \text{ MW}_{\text{th}}$

Full picture district heating facility, WT3 and BMHKW

20

Biomass CHP: Waste heat utilisation turbine exhaust steam

From climate-neutral to #climatepositiv as one of the first energy companies in the world

We will actively remove CO₂ from the atmosphere, bind it permanently, use it or store it. In this way, we will not only offset our own unavoidable residual emissions but also achieve negative overall emissions and thus become #climatepositiv by 2035.

In this process, heat can be generated for district heating generation with heat pumps.

HKW until 2035 – Expansion of the district heating supply phase 3

Project development based on the experience of the operation of a Pilot CO_2 capturing and treatment facility in Mannheim

Thank you for your attention

